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ABSTRACT 
 
 
Multidimensional data collected by large consortia such as The Cancer Genome Atlas 

Network (TCGA) provides sufficient statistical power for cross-sectional studies to identify 

cancer-associated genes with the aim to unravel complex cancer mechanisms involving 

clinically actionable targets. However, current methods employed in cross-sectional 

studies suffer from two main caveats. First, they do not account for the data’s continuous 

structure when reducing its dimensionality, resulting in possible artifacts. Second, they 

rely on complex modeling of the mutational background to identify cancer-associate genes 

which might introduce systematic errors resulting in false positives. We have developed 

an orthogonal method involving topological data analysis and original statistics, which is 

not prone to the mentioned caveats. Using topological data analysis, specifically the 

Mapper algorithm, we map the global gene expression space into a two-dimensional 

space and apply to it a novel statistical algorithm which does not rely on complex modeling, 

but rather on mutations association with the disease phenotype, as captured in the two-

dimensional space.  We applied this method to 2,916 tumors spanning seven cancer types 

and identified in total 85 cancer-associated genes, including 38 novel candidates such as 

FMN2 mutations in the p53/Rb pathway in lung adenocarcinoma and PTPRD mutations 

in urothelial bladder cancer.  
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BACKGROUND 

General biology and epidemiology of cancer 
 

Cancer is a group of more than one hundred diseases characterized by 

unregulated proliferation and spread of cells. If the abnormal growth, a.k.a the tumor, is 

not controlled, it can promote local or remote damage and might result in severe illness or 

death. Cancer can arise from different specialized cells within the body, including epithelial 

(known as carcinoma), mesenchymal (sarcoma), hematopoietic (lymphoma, leukemia, 

myeloma) and neuroectodermal (glioma, blastoma) tissues (1).   

Alarmingly, according to the latest global report by the World Health Organization 

(2), cancer is one of the leading causes of mortality and morbidity worldwide with 

approximately 8.2 million cancer-associated deaths (not including non-melanoma skin 

cancer) and 14.1 million new cases in 2012 alone (2). By 2030, those rates are expected 

to rise to 20 million new cases and 13 million deaths simply due to aging and natural 

population growth. However, it is safe to assume that the numbers will grow even larger 

due to the adoption of lifestyles associated with cancer, such as smoking, poor diet, and 

fewer pregnancies, in developing countries (2). Global incidence and mortality rates per 

primary site are detailed below in Figure 1 (2).  

Figure 1 | Cancer incidence and mortality rates. The labels correspond to 
the primary site of origin and percentage among all cases and both sexes in 
2012. Adapted from (2). 

Incidence 

 

Mortality 
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Cancer evolves in an evolutionary process initiated by acquired genomic mutations 

and natural selection that acts upon the phenotypic outcome (3). In other words, if a 

mutation endows the cell with a survival advantage over other cells in the tissue, cancer 

might develop. The mechanisms by which a cell acquires mutations varies, and to name 

a few, mutations are introduced by viral agents, exposure to environmental carcinogens, 

and through random errors introduced by DNA polymerase during cell replication. Among 

the common genomic alterations are point mutations, copy number variations and 

genomic fusions (3). While most of the acquired mutations have no functional impact, or 

can be an essential part of the development of a benign local mass (3), occasionally, a 

cell acquires a powerful set of advantageous capabilities that promotes cells spreading to 

nearby and remote tissues, rendering it malignant. These capabilities are induced by 

mutational processes known as the “hallmarks of cancer” as introduced in Table 1 (4). 

 

Table 1 | Established hallmarks of cancer and mechanisms. Adapted from (4). 

Cancer hallmark Inducing mechanism 

Sustaining proliferative 

signaling 

Excessive binding of growth factors to cell surface receptors 

or disruption of growth negative feedback loops. 

Evading growth 

suppressors 

Silencing mutation of RB and TP53. 

Resisting cell death Evading apoptosis through silencing mutations of TP53. 

Enabling replicative 

immortality 

Circumventing telomere-induced senescence through 

activation of telomerase. 

Inducing angiogenesis Up-regulation of VEGF pathways 

Activating invasion and 

metastasis 

Expression of N-cadherin, a migration promoting molecule. 

Downregulation of E-cadherin, a cell adhesion molecule. 
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Although we have made progress in untangling the mysteries of this complex 

disease, we are still witnessing millions of cancer associated mortalities each year. Hence, 

a deeper understanding of the disease would be instrumental in improving patient’s 

outcome. One way to accelerate this process is by conducting cross-sectional cancer 

studies using data collected from multiple tumor types and thousands of patients, as made 

available by large consortia such as The Cancer Genome Atlas (TCGA) (5) and the 

International Cancer Genome Consortium (ICGC) (6). This approach provides the 

required statistical power to generate a more comprehensive molecular profiling of the 

disease with the potential to unravel novel and clinically actionable mechanisms (7). 

 

Cross-sectional studies and their importance in cancer research 
 

Several consortia have undertaken the mission to assemble an integrative profile 

of cancer’s molecular and clinical landscape with a goal to spur new therapeutic, 

preventive and diagnosis strategies for cancer patients. The multivariate data collected by 

large consortia such as The Cancer Genome Atlas (TCGA) (5) and the International 

Cancer Genome Consortium (ICGC) (6) includes, among others, genomic, epigenomic, 

transcriptomic, proteomic and clinical data from thousands of patients across dozens of 

tumor types. The resulting rich data provides the required statistical power to build an 

integrated picture of commonalities, differences and rising themes across tumor lineages, 

otherwise undetectable. Specifically, by integrating this data, we can now more easily 

identify new tumor subtypes, driver mutations (including rare somatic mutations), 

pathways, prognostic biomarkers, and increase our therapeutic repertoire either by 

identifying new therapeutic targets or potentially, by assigning treatment effective in one 

tumor type to another based on newly identified commonalities. 
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In this capacity, integration of gene expression levels and genomic events (Copy 

number variations and somatic mutations) of 200 Glioblastoma multiforme (GBM) patients 

in a cross-sectional study led by TCGA revealed clinically relevant subtypes and their 

associated genomic alterations. The four identified subtypes (Proneural, Neural, Classical, 

and Mesenchymal) differ regarding response to therapeutic treatment and survival 

patterns (8).  Similarly, two independent studies of 230 lung adenocarcinoma (9) and 131 

invasive urothelial bladder (10) carcinomas revealed activating mutations in the growth 

factor ERBB2 (HER2) which had been reported implicated in HER2-positive metastatic 

breast (11) and gastric cancer (12). Indeed, a derivative of Trastuzumab, a monoclonal 

antibody that is already being used for treating HER2-positive gastric (13) and metastatic 

breast cancer (14), is in a recruiting phase of a clinical trial (ClinicalTrials.gov id: 

NCT02675829) for the treatment of other HER2 amplified or mutant cancers, including 

bladder and lung cancer.  

Naturally, the increased availability of high-quality data invites more studies and 

raises demand for advanced analytical methods that can exploit the statistical power 

associated with large cohorts.  Indeed, dozens of new methods with the aim to identify 

cancer-associated genes (15) or cancer-associated pathways (16) have been developed 

in the past decade.   

 

Common methods for identifying cancer-associated genes and limitations 
 
 

A common approach for identifying cancer-associated genes relies on the 

reasoning that if a gene is more frequently mutated than expected (as defined by a 

background distribution of the mutational landscape), it implies a sort of positive selection 

for the mutation in the overall oncogenic process.  MutSigCV, by Broad Institute (17), and 
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Genome MuSiC by Washington University School of Medicine (18), take this approach 

and have been employed prevalently in prime cross-sectional studies (7).  

In earlier versions of MutSigCV the background mutational process was averaged 

and unified genome-wide, and every gene that appeared to be mutated above a threshold 

(corresponding to the background), was deemed as significant. While this simple modeling 

performed well in earlier studies involving small cohorts (19)(20), it lacked the required 

sensitivity when applied to larger cohorts, resulting in many false positives (17). This was 

attributed to the increased mutational heterogeneity introduced by large cohorts that 

impose increasing difficulties in modeling the mutational background of the disease. For 

example, a substantial heterogeneity (up to 1,000 fold) exists in the mutational rate across 

patients with the same cancer type, mostly when there is an ongoing exposure to some 

carcinogens, such as smoking and UV radiation in lung adenocarcinoma and melanoma 

patients, respectively (Figure 2).   

Additional heterogeneity in mutational rates exists across different genomic loci of 

the same patient. Two main factors explain to a large extent the genome-wide 

heterogeneity. The first factor is gene expression levels, which are known to be inversely 

correlated with mutational rates due to transcription-coupled repair mechanism (21). The 

second factor is the time of replication of the genomic loci during the cell cycle, as it has 

been shown that late-replicating regions accumulate more mutations than early ones, 

possibly due to temporal depletion of available nucleotides (17). The correlation between 

these two factors and the mutation rate is shown in Figure 3 for chromosome 14. 
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 To compensate for cross-patient and genome-wide heterogeneities, later versions 

of MutSigCV define a more stringent background modeling of the mutational landscape, 

considering genomic factors on a per-gene and per-patient basis, as opposed to a simple 

and averaged genome-wide mutational rates. These factors include gene expression 

levels, replication time, differential chromatin states, local GC content, gene density, and 

information about mutational rates of nearby genes in cases where the signal is weak (17). 

Similarly, MuSiC models the mutational background taking into account the mutated base, 

CpG islands properties, transversions and transitions rates (18). While employing simpler 

modeling than MutSigCV, MuSiC allows for a user-defined region of interest and further 

provides information about implicated mutated pathways, functional impact on the 

corresponding protein as well as clinical information from online databases such as OMIM 

(18).   

As one can appreciate, modeling the mutational background is a complicated task 

that requires consideration of many factors. Therefore, the above methods are limited by 

the complexity involved in modeling the mutational background. Failure in generating an 

accurate mutational background would introduce systematic errors resulting in decreased 

sensitivity and specificity. Indeed, few factors such as recombination rates, evolutionarily 

conserved bases, and distance to the telomere, are not considered in current algorithms, 

although they all shown to be associated with mutation rates (22). Additionally, since the 

Figure 3 | Genome-wide differential mutations rates. Mutation rate (red), replication time (blue) 
and expression level (green) across chromosome 14. Adapted from (17) 
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above methods are recurrence-based (capture genes that are mutated above a certain 

threshold), they are not likely to identify very rarely mutated genes.  

Given the limitations above, there is some added value in applying orthogonal 

methods which do not discriminate driver from passenger mutations based on complex 

modeling and/or recurrence.  Oncodrive-FM is one such method that relies on the notion 

that there is a positive selection for mutations with high functional impact on the protein.  

(23). MutComFocal is another method which discerns driver from passenger mutations by 

integrating point mutations and copy number information (24). In this work, we have 

developed another orthogonal method that identifies cancer-associated genes based on 

global gene expression levels using topological data analysis. 
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Topology 
 

Topology is a major branch of mathematics that is concerned with qualitative 

geometric properties of a shape or an object. These qualitative features are those that 

persist through continuous deformations, such as twisting, shrinking and bending without 

breaking or tearing the object apart (25), as exemplified in Figure 4. In other words, in 

topology, we care about how subcomponents of an object are interconnected, rather than 

their coordinates in a metric space. This connectedness property sits at the cornerstone 

of topology. 

Leonard Euler laid the foundations of topology 

back in 1735 when he solved the mathematical 

problem of the “Seven Bridges of Königsberg”(26). In 

a nutshell, the problem is concerned with finding a 

walk through the four river-separated segments of the city, by crossing each of its seven 

bridges only once. On route to a solution, Euler recognized that the only information 

required to solve the problem is the qualitative features, a.k.a. topological features, of the 

city landscape, namely, the pattern in which the city segments are interconnected with 

bridges (Figure 5A). Metric features, such as the distances between segments were not 

important. By recognizing the importance of the topological features that are invariant 

under continuous deformations, Euler was able to reduce the problem to its core and find 

a solution (27) (Figure 5B).  

Figure 4 | Examples of 
deformations. 

Figure 5 | The city of Königsberg. (A) Seven bridges connect the four parts of the city which 
are marked in different colors. (B)  reduced representation of the city’s topological features as 
offered by Euler. Adapted from (27) 

A B 
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Simplifying complex shapes or multidimensional spaces are often required in 

science. Algebraic topology builds upon Euler’s earlier insights about the importance of 

the topological features, that is, how things are connected, and provides mathematical 

tools to replace the original object with a much simpler one called simplicial complex (28). 

A simplicial complex is a generalization of a network, consisting of nodes (or vertices) and 

edges with additional higher dimensional elements such as triangles and polyhedrons that 

accurately capture the topological features of the original space (for an example of a 

simplicial complex representing an annulus shape see section Mapper background 

below). In contrast to the original space which is usually defined by infinite continuity of 

points, the simplicial complex consists of a finite number of elements (nodes, edges, 

triangles, and higher dimensional elements) which satisfy specific mathematical properties 

that make it more amenable for algebraic operations (28). Consequently, one can perform 

algebraic operations on the simplicial complex to systematically obtain the topological 

features of the original shape, otherwise hard to extract.  In simple words, a simplicial 

complex is a stripped down version of the original space that preserves its qualitative 

topological features, and its major advantage is that it serves as a proxy for operations 

from which one can extrapolate the original shape’s topological features. 

Although topology has been an area of intensive study for the last century (29), 

until recently, it has not grown outside of a pure mathematical realm (except a few abstract 

applications in mathematical physics (30)). The underlying reason is that topology, in its 

traditional formulation, mostly deals with infinite continuous spaces, which are very useful 

when approaching abstract problems in theoretical physics (e.g. field and string theories 

(30)), but are less helpful in addressing common and more practical problems.  

In the past 10-15 years, however, a new branch of topology, termed topological 

data analysis (TDA) has emerged with strong applications to practical problems involving 

finite metric spaces, namely point cloud datasets. A point cloud can be imagined as a 
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sampled set of points from an underlying space or a shape, together with a notion of 

distance between points, hence defining a finite metric space (31). By applying topological 

notions to the point cloud, we can infer topological features of the underlying space without 

knowing the space itself. This type of approach resulted in an explosion of applications in 

many fields outside of pure mathematics, including medicine (32–34), anatomy (35), viral 

evolution (36), materials science (37) and image recognition (38).  

 

Topological data analysis: a new approach to data analysis 
 

In modern science, we often encounter multidimensional and complex datasets 

that are very hard to interpret, analyze and visualize. This is especially true in the context 

of genomics, where datasets are usually comprised of thousands of genes measured from 

a handful to thousands of samples. Several practical methods have been developed in 

the context of topological data analysis to analyze and visualize complex datasets. 

Persistent homology (39) and dimensional reduction using Mapper algorithm (40) are two 

popular examples. The latter has been used recently to study complex diseases such as 

diabetes (33) and breast cancer (32), and we build upon it in this work. 

Non-TDA methods, such as principal component analysis (PCA), or in its more 

general form, multi-dimensional scaling (MDS), are commonly used algorithms to reduce 

the dimensionality of complex datasets.  At the core of these methods, a projection of the 

multidimensional data into a lower dimensional space takes place in a way that explains 

the variance within the data (41). However, unlike TDA, these methods impose a 

projection without prioritizing the local relations (connectedness) of data points in the 

original multidimensional data (31). Hence, adjacent points in the projected space are not 

necessarily adjacent in the original data. Losing these local relations is a major drawback 

when handling continuous datasets that take a non-trivial structure with an intrinsic 

meaning about the data (31). As we will see, TDA is a well-suited approach for capturing 
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the non-trivial structure of the data. In this thesis, we present a novel method that we have 

developed building upon topological data analysis tools, specifically the Mapper algorithm, 

to find cancer-associated genes, integrating gene expression levels and somatic 

mutations. 

Mapper background 
 

The Mapper algorithm implements topological ideas based on partial clustering to 

reduce multi-dimensional data into a low-dimensional simplicial complex that captures 

some of the local relations within the original dataset, or point cloud (40). In the context of 

this work, the data consists of tumors from TCGA that are represented as points in a 

multidimensional gene expression space. By emphasizing the local relations between the 

points, the method can track patterns in the data that are lost when performing standard 

dimensional reduction techniques and traditional clustering (40). An additional feature of 

Mapper is that it allows analysis of the data through different scales by generating a series 

of simplicial complexes corresponding to different input parameters known as gain and 

resolution (described below). This multiscale analysis allows discovery of different 

patterns within the data and, therefore, adds robustness to the analysis, as implemented 

in our method.   

Mapper implements a methodology similar to the Vietoris-Rips complex 

construction (39), a topological idea that is illustrated in Figure 6 and implemented as 

follows:  for a given set of points 𝑆 and a number 𝜀 > 0 the Vietoris-Rips complex 𝐶 is a 

simplicial complex constructed by following two steps: 

- Cover each point with a ball 𝐵 of diameter ε (Figure 6A), and  

- Connect pairs of points whose covering balls intersect with edges, connect 

three points whose covering balls intersect with a triangle, while points whose 

covering balls do not intersect at all remain disconnected (Figure 6B). 
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              Repeating these two steps for a series of positive values of ε (Figure 6A, 6C) 

results in a series of simplicial complexes (Figure 6B, 6D). Intuitively, as the diameter ε 

increases (Figure 6C), more edges and multidimensional objects such as triangles 

(yellow) and polyhedrons (green) are added to the simplicial complex, and the latter 

becomes more connected (Figure 6D). Eventually, at a critical (large) value of ε, all data 

points are connected to each other. Persistent homology relates topological features of 

the simplicial complexes at different values of ε.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 6 | Vietoris-Rips complex. (A) a point cloud (red dots) representing an annulus 
is covered with balls of diameter ε. (B) a simplicial complex corresponding to the point 
cloud and covering balls. Edges, connect pairs of points whose covering balls intersect, 
triangles (yellow) connect three points whose covering balls intersect. Points, whose 
covering balls do not intersect at all, remain disconnected in the network. (C) the same 
point cloud is now covered with balls of a larger diameter ε. The resulting simplicial 
complex (D) is more connected with more edges, triangles (yellow) and a tetrahedron 
(green) which connect four points whose covering balls intersect. Adapted from (39) 
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               In resemblance to the Vietoris-Rips complex, the Mapper algorithm builds 

covering regions related to data points and uses their intersection to generate a simplicial 

complex. However, the Mapper algorithm does not use covering in the form of balls around 

individual points. Instead, it uses a user-defined filter function and other parameters known 

as gain and resolution, to define covered regions of the data (35). 

 

Mapper algorithm 
 

The input for the Mapper algorithm is a point cloud (namely, a set of points 

endowed with a metric), one or more filter functions, and two parameters (gain and 

resolution). One can use different combinations of filter function and metric based on the 

question and data at hand.  Construction of a simplicial complex using Mapper takes place 

in four steps.  

The first step is to map the points in the point cloud to the real line 𝑅 through the 

filter function 𝑓. One can use several filter functions, among them: Gaussian density, 

nearest neighbor, etc. For simplicity we demonstrate the Mapper algorithm with a simple 

𝑌-coordinate filter function that maps each point in the point cloud to the real line 𝑅 

according to its 𝑌 coordinate (Figure 7A).  

The second step is to define a covering of the real line 𝑅 with overlapping intervals 

whose size (number of points contained) is determined by the resolution parameter. The 

extent of overlap between intervals is determined by the gain parameter. The resolution 

parameter takes values ranging from 1 to the total number of data points.  With a minimal 

resolution value, the interval covers the entire real line, whereas with a maximum 

resolution value, each interval covers individual data points. The gain parameter ranges 

from 1 to 10 which corresponds to 10 percent to 100 percent overlap between the intervals. 

Practically, the higher the resolution the more vertices the simplicial complex has, and the 

higher the gain the more edges it gets. Once a covering of the real line 𝑅 is set, the inverse 
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function 𝑓−1 is used to define a covering of the actual point cloud. These covering patches 

are called “bins” (Figure 7B). Next, Mapper clusters points within each bin using single-

linkage clustering (Figure 7C). The clusters formed in this step correspond to the vertices 

of the simplicial complex. 

Finally, to complete the simplicial complex construction, edges are formed 

between vertices (clusters) that share at least one data point (Figure 7D). Similarly, if three 

vertices share a data point, they are connected with triangles and so on. In our analysis, 

we discard multidimensional elements such as triangles and polyhedrons (see Figure 6D) 

and consider only one-dimensional elements of the simplicial complex, namely nodes and 

edges. 

 

  

Figure 7 | Simplicial complex construction with Mapper. (A) A point 
cloud (in this work each point represents a differnet cancer patient) is 
mapped to the real line R using a filter function. (B) A covering of the real 
line is defined by gain and resolution parameters and implies a covering of 
the point cloud. (C) Clustering takes place within each bin. (D) Simplicial 
complex - clustered points are reduced to nodes, edges connect nodes that 
share at least one data point. Figure courtesy of Pablo G. Camara. 
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STRATEGY 

Motivation for TDA and global gene expression levels as a phenotype 
 

Global gene expression patterns are a strong and indicative phenotype for tumors. 

Indeed, many cross-sectional studies have identified oncogenic molecular pathways and 

tumor subtypes based on gene expression patterns extracted from RNA-seq data (9, 10, 

42–46).  Notwithstanding, these studies, based on traditional clustering methods, might 

be incomplete since the transcriptional pattern across large cohorts usually takes a 

continuous structure rather than a discrete one. In other words, there exists a continuum 

of samples between each reported subtype that is lost when applying standard 

dimensional reduction techniques and traditional clustering methods. Topological data 

analysis, on the other hand, is a viable alternative approach, since it achieves dimensional 

reduction without losing local relations within the data that can be used in the downstream 

analysis (Methods). For instance, the simplicial complexes generated by the Mapper 

algorithm from gene expression levels of 142 glioblastoma multiforme (GBM) patients 

represent a continuum of samples between classical and proneural GBM subtypes, 

characterized by elevated expression levels of EGFR and PDGFRA, respectively (8) 

(Figure 8).  

Calling cancer-associated mutations from gene expression levels is an orthogonal 

approach to standard methods such as MutSigCV and MuSiC. These methods rely on 

modeling the background mutation rate to discern driver from passenger mutations. Our 

method offers the advantage to pick up novel genes, undetectable by those recurrences-

based methods, such as rarely mutated genes or very long genes, as long as they have 

an effect on global gene expression patterns. Since our method is non-parametric, it is not 

vulnerable to systematic errors involved in complex modeling of a background mutation 

rate.  
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GBM, classical subtype  

(EGFR expression) 

 

GBM, proneural subtype  

(PDGFRA expression) 

 

Figure 8 | GBM classical and proneural networks. The simplicial complex was generated by 
Mapper from the global expression levels of 142 GBM patients. Each node consists of several 
samples clustered together based on similar gene expression levels. Edges connect nodes that 
share at least one sample. Nodes are colored by the average expression levels of (A) EGFR and 
(B) PDGFRA, corresponding to markers of classical and proneural GBM subtypes, respectively (8). 
There is no sharp separation between patients based on expression levels of EGFR and PDGFRA, 
but rather a continuum of samples between the two subtypes. 
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Statistical Analysis - Connectivity 
 

In this work, we have developed and applied a statistical method (connectivity 

analysis) in conjunction with topological representations of the data (simplicial complex 

representations generated using the Mapper algorithm) to identify cancer-associated 

genes. We nominate a mutation as cancer-associated if it is statistically associated with 

global gene expression commonalities between tumors carrying that mutation. Our 

statistical analysis assesses this association by exploiting the local relations within the 

simplicial complex representation of the data.  More specifically, our analysis calculates, 

for every mutated gene, a “connectivity value” which reflects how much the mutation is 

connected or localized across the simplicial complex compared to random chance 

(Methods). To understand the rationale behind this approach, it is useful to consider a 

simplicial complex as a network that captures the similarities between transcriptional 

programs of different patients. Intuitively, features (such as specific mutations) localized 

or connected in a non-random fashion across the network are associated with the 

expression commonalities of a group of samples. The connectivity analysis calculates the 

statistical significance of the feature’s localization within the simplicial complex, thereby 

identifying features that are associated with the structural layout of the simplicial complex. 

In our case, the features we are testing for are mutated genes and the simplicial complex 

represents the local relations between gene expression levels of the tumors in the cohort. 

Appropriately, we nominate candidate cancer-associated genes if they are deemed 

statistically significant by this connectivity analysis algorithm. For example, a statistically 

significant localization of CIC and PTEN mutations over a simplicial complex generated 

from global gene expression levels of 513 lower-grade glioma patients are shown in 

Supplemental Figure 1.  
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RESULTS 

We analyzed in total seven tumor types, spanning 2,916 patients from TCGA, 

identifying 85 cancer-associated genes, including 38 genes (Table 2) that were not 

previously reported in the literature of the corresponding cancer type. We retrieved global 

RNA-seq gene expression levels and somatic mutation data for all tumors using TCGA (5) 

and Broad’s firehose pipeline (47), respectively (see Methods section for somatic mutation 

criteria). We reduced the multidimensional global gene expression space into a two-

dimensional network without losing its continuous structure using the Mapper algorithm. 

The nodes in the network comprise samples with similar gene expression patterns. Edges 

connect nodes that share at least one data point (c.f. example in Figure 7). For robustness, 

and to maximize our statistical power, we generated a series of topological 

representations for each tumor by scanning systematically over the parameter space of 

the Mapper algorithm (gain and resolution). We reasoned that mutations that are localized 

in the resulting networks are associated with the global gene expression levels in the 

patients that harbor those mutations, and, therefore, with the disease. We quantified 

statistically the localization of all non-synonymous mutations that passed initial filtering 

thresholds, based on mutation frequency and the ratio of non-synonymous versus 

synonymous mutations (Methods), using our connectivity analysis.  

To test for artifacts coming from the observed inverse correlation between 

expression and neutral somatic mutations (21), and potential deviations from it due to 

positive selection, we also computed the Jensen-Shannon distance between the 

distribution of mutations and expression in the network, for all mutated genes with a 

statistically significant connectivity in the network. Additionally, as a further check on 

consistency, we tested for batch effects and for the association between mutational load 

and global expression patterns, subsampling mutations and/or removing outliers (samples 

with less than 10 mutations) when required. A flow diagram of our pipeline is provided in 
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Supplemental Figure 2, and the parameters used for each tumor are provided in 

Supplemental Table 2. 

 Aggregating results from the seven tumor types that we have analyzed (bladder 

urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), glioblastoma (GBM), 

low-grade glioma (LGG), colon (COAD), lung (LUAD), and stomach adenocarcinoma 

(STAD)), we have identified 85 distinct (in at least one tumor) cancer-associated genes. 

Among those genes, 38 genes are reported here for the first time as being associated with 

the corresponding cancer type (23 of them in lung adenocarcinoma). Another 39 genes 

were previously reported in the literature (9, 10, 42–46) and 8 more (one in stomach and 

the rest in colon adenocarcinoma) are reported by MutSig2CV analysis by Broad institute’s 

Firehose pipeline (47), in the same cohort of patients (Table 2).  A complete list of the 

results, organized by cancer type, including one pseudogene and 12 genes that were 

considered as artifacts due to low expression levels (TPM<2), batch effects, or because 

they declared as false discoveries by our positive selection test are provided in 

Supplemental Table 1. 

 

Finding previously reported genes set confidence in our novel method, especially 

considering hypermutated tumors such as colon adenocarcinoma (48) which confer a 

Table 2 | Cancer-Associated Genes Identified using Topological Data Analysis 
In parentheses the number of cancer types associated to the mutated gene. A large 
fraction of the detected genes (underlined) were associated with lung adenocarcinoma. 
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significant number of passenger mutations.  Canonical cancer-associated genes (such as 

TP53, APC, PIK3CA, KRAS) were deemed significant (JSD q-value<0.15) in our positive 

selection test (see Methods) across all tumors (Figures 9C,11-16C) and none of the 

previously reported genes were declared as a false positive (JSD q-value >0.85). Our 

method also proved capable of identifying 18 rare mutations occurring in less than 5 

percent of the patients. In what follows, we discuss our results in the context of each 

cancer type.  

Lung adenocarcinoma 
 

Despite the considerable heterogeneity in mutation rates across lung 

adenocarcinoma patients (Figure 2), the mutational load distribution is uniform (Figure 9A 

top), and it is not associated with mutational load effects, as assessed by our connectivity 

analysis across a series of networks generated using the Mapper algorithm (Figure 9A, 

bottom). After running our connectivity analysis for a filtered list of 350 genes over a coarse 

range of networks (see Methods), we identified an optimal range of networks (Figure 9B), 

which is enriched for significant genes, does not overlap with mutational load effects, and 

contains a large number of samples. We used this range of networks for a secondary 

connectivity analysis with finer resolution and gain parameters (Supplemental Figure 3A) 

and identified in total 35 cancer-associated genes in lung adenocarcinoma (Figure 9C, 

bottom), of which 23 are novel candidates that account for almost half of all the novel 

candidates we have found across the seven tumors collectively (Table 2). Positively, all of 

the previously reported genes (STK11, EGFR, KEAP1, KRAS, ATM, TP53, SMARCA4 (9) 

and AKAP9 (49)) have a significant JSD q-value (q<0.15, Figure 9C, middle), which 

implies a signal for positive selection (Methods). This raises a particular interest in the 12 

novel candidates that also present a signal for positive selection and removes interest in 

two genes, KLHL4, and PSG8, which demonstrate non-significant JSD q-value (q>0.85), 

and are therefore possibly artifacts.  
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  Figure 9 | Identification of Lung Adenocarcinoma Associated Mutations using TDA. 
(A) Top: mutational load distribution in a logarithmic scale across all samples. Bottom: statistical 
significance of the mutational load, as assessed by our connectivity analysis across a series of 
networks, generated by Mapper (Methods). (B) Connectivity analysis summary of selected 
mutations in a coarse grid of networks generated using the Mapper algorithm (Methods). Numbers 
in the tiles represent the total number of significant mutations found in that network. In parenthesis 
are the number of samples in the first connected component of the network (Methods). The red 
square indicates the selected range of networks used in a second connectivity analysis for same 
mutated genes (Methods). (C) At the bottom are cancer-associated genes identified by the 
connectivity analysis. Previously reported genes are depicted in yellow, novel candidates in cyan, 
artifacts in red. Genes are ordered by significance frequency across the networks, as presented 
in the top step function. Boxplots represent JSD q-value of the gene (Methods). Below the red line 
(q<0.15) are genes that show significant positive selection. Above the red line (q>0.85) are 
probable artifacts (Methods). The histogram represents the mutation frequency of the gene in the 
cohort. (D) Enlarged list of identified genes. 
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An especially interesting novel candidate is FMN2, that encodes a member of the 

Formin homology proteins family, Formin-2. FMN2 is mutated in 10% of the samples 

(Figure 9C, histogram), and 30% of the networks (Figure 9C, top) and is suspected to act 

as a tumor suppressor in the p53/Rb pathway via positive regulation of CDKN1A, that 

encodes the Cdk inhibitor, p21 (50). We, therefore, reasoned that FMN2 mutations, if 

associated with lung adenocarcinoma, should be mutually exclusive with other mutant 

tumor suppressors or mutually exclusive with amplified oncogenes in the p53/Rb pathway 

(This is especially true if CDKN1A is the only critical target of FMN2). Indeed, we found 

FMN2 mutations to be mutually exclusive with TP53 mutations both in lung 

adenocarcinoma (𝑝 < 5.3𝑥10−6)  and bladder urothelial carcinoma (𝑝 < 0.022) , using 

Fisher’s exact test. Additionally, in lung adenocarcinoma, FMN2 mutations are mutually 

exclusive with copy number amplification of CCNE1 (𝑝 < 0.055) and E2F3 (𝑝 < 0.054), 

two oncogenes in the pathway that pushes cell cycle forward (Figure 10). These 

observations reinforce a potential role for FMN2 in the p53/Rb pathway as a tumor 

suppressor and encourage further investigation into FMN2 implications in lung and 

bladder cancer.   

  

Figure 10 | FMN2 and p53/Rb pathway. 
FMN2 is induced by CDKN2A and 
positively regulates CDKN1A by 
preventing its degradation (10, 50).  
FMN2 mutations are mutually exclusive 
with TP53 and CCNE1 (red points) in lung 
adenocarcinoma. 
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Additionally, gene ontology enrichment analysis using Enrichr (51) indicated a 

group of six genes involved in mechanism and structure of ion channels. These include 

the previously reported AKAP9 (49), as well as ANO4, SLC8A1, ANK2 and SCN2A and 

CACNA2D (Figure 9C bottom). Aberrant ion channels activity is known to participate in 

various oncogenic processes (52) and specifically in lung adenocarcinoma (53). While 

these results are a subject for further validation, they might guide future research about 

ion channels and their involvement in cancer and their potential as biomarkers for 

prognosis and diagnosis, a direction already under exploration (53). Other interesting 

novel candidates are ADAMTS12 and PCDHB4 which are involved in cell-cell adhesion 

processes (54, 55), an important step towards cellular invasion and metastases (4). 

Finally, we report PTPRC, a member of the protein tyrosine phosphatase (PTP) family, 

which was previously associated with stomach adenocarcinoma (45) as a novel candidate 

in our lung adenocarcinoma analysis. Interestingly, PTPRD, another family member of the 

PTP family, that is known to play various roles in cancer (56), is reported by us as a novel 

candidate in urothelial bladder carcinoma as detailed below.  
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Urothelial bladder carcinoma  

Similar to the analysis of lung adenocarcinoma, we did not observe mutational load 

effects involved in the bladder cancer analysis (Figure 11A). Our analysis over a coarse 

grid, followed by a fine grid of networks (Figure 11B, Supplemental Figure 3B) identified 

in total 9 cancer-associated genes in the urothelial bladder carcinoma cohort, four of them 

were previously reported (FGFR3, RB1, ELF3 and TP53 (10)), another four genes 

(PTPRD, MED13, FMN2, HSPG2) are novel candidates and one of them (MUC17) has 

high JSD q-value and is a probable false positive (Figure 11C).  

Besides FMN2 (mutated in 6.3% of the samples) which has been already 

discussed above, PTPRD (mutated in 6.9% of the samples) is another interesting 

candidate. PTPRD has a near significant JSD q-value, and it is found to be statistically 

significant in 60% of the networks, therefore being robustly associated with global 

expression patterns in the cohort. PTPRD gene encodes a member of the Protein Tyrosine 

Phosphatase family, which are reported to play a role in cancer either as tumor 

suppressors or oncogenes (56). Specifically, it was reported to have a tumor suppressor 

role in glioblastoma through dephosphorylation of STAT3, an oncogenic transcription 

factor which is also implicated in bladder cancer development (57). Considering the above, 

and the possible involvement of other PTP family members (PTPRC) in lung 

adenocarcinoma (see previous section), PTPRD mutations and PTPRD-STAT3 

interactions are an interesting line of further investigation. 
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  Figure 11 | Identification of Urothelial Bladder Cancer Associated Mutations using TDA. 
(A) Top: mutational load distribution in a logarithmic scale across all samples. Bottom: no statistical 
significance of the mutational load, as assessed by our connectivity analysis across a series of 
networks, generated by Mapper (Methods). (B) Connectivity analysis summary of selected 
mutations in a coarse grid of networks generated using the Mapper algorithm (Methods). Numbers 
in the tiles represent the total number of significant mutations found in that network. In parenthesis 
are the number of samples in the first connected component of the network (Methods). The red 
square indicates the selected range of networks used in a second connectivity analysis for same 
mutated genes (Methods). (C) At the bottom are cancer-associated genes identified by the 
connectivity analysis. Previously reported genes are depicted in yellow, novel candidates in cyan, 
artifacts in red. Genes are ordered by significance frequency across the networks as presented in 
the top step function. Boxplots represent JSD q-value of the gene (Methods). Below the red line 
(q<0.15) are genes that show significant positive selection. Above the red line (q>0.85) are 
probable artifacts (Methods). The histogram represents the mutation frequency of the gene in the 
cohort. 
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Lower-grade glioma and glioblastoma multiforme  

The low-grade glioma cohort included two hypermutated samples which resulted 

in significant mutational load effects in some of the generated networks. Subsequently, in 

order to remove the mutational load effects, we removed mutations from hypermutated 

cases in a subsampling process (see Methods section for more information) (Figure 12A). 

In the lower-grade glioma cohort, connectivity analysis over a selected range of networks 

(Figure 12B, Supplemental Figure 3C) revealed highly enriched results for previously 

reported genes (Figure 12C) (43).  The only novel candidate is SYNE1 (mutated in 2.3% 

in the samples), a very long gene encoding for 8,797 amino acids protein. Identifying 

SYNE1 as a novel candidate emphasizes the power of our method to detect long and 

rarely mutated genes which are usually undetected by standard recurrence based 

techniques, such as MutSig2CV. Since our method does not rely on any prior modeling of 

this kind, but rather on association with an indicative phenotype (gene expression levels), 

we are able to identify it as cancer associated, despite its length and low frequency. Other 

interesting candidates in lower-grade glioma are NIPBL (mutated in 3.7% of the samples) 

and COL6A3 (mutated in 2.1% of the samples), which has just been recently reported as 

cancer-associated using MutSig2CV analysis on a joint low-grade glioma and 

glioblastoma cohort of 1,122 patients (58).  NIPBL1 has a role in chromatin cohesion, a 

potential oncogenic process if malfunctioned (58). Our results further support its 

implication in the disease. COL6A3 was found to be significant both in low-grade glioma 

and glioblastoma (mutated in 6.3% of the samples). In the GBM cohort, on top of COL6A3, 

we have identified five cancer-associated genes, four of them (IDH, ATRX, EGFR, and 

NF1) are previously reported (8), and one of them, CALN1 (mutated in 4.9 % of the 

samples), is a novel candidate with a significant JSD q-value, a sign for positive selection. 

CALN1 encodes a calcium ion binding protein. Glioblastoma multiforme results are 

summarized in Figure 13 and Supplemental Figure 3G. 
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Figure 12 | Identification of Lower-grade Glioma Associated Mutations using TDA.  
(A) Top left: mutational load distribution in a logarithmic scale across all samples. Before 
subsampling (Methods), there are two hypermutated cases. The dashed red line represents a 
subsampling threshold. Grid below the distributions summarizes the statistical significance of the 
mutational load, as assessed by our connectivity analysis across a series of networks, generated 
by Mapper (Methods). In most networks the mutational load is significant (p<0.05). After 
subsampling (Methods) as per the threshold, the new mutational load distribution is centered 
around the mutational load median of the non-hypermutated cases. The mutational load is no 
longer significant in most networks. (B) Connectivity analysis summary of selected mutations in 
a coarse grid of networks generated using the Mapper algorithm (Methods). Numbers in the tiles 
represent the total number of significant mutations found in that network. In parenthesis are the 
number of samples in the first connected component of the network (Methods). The red square 
indicates the selected range of networks used in a second connectivity analysis for same mutated 
genes (Methods). (C) At the bottom are cancer-associated genes identified by the connectivity 
analysis. Previously reported genes are depicted in yellow, novel candidates in cyan. Genes are 
ordered by significance frequency across the networks as presented in the top step function. 
Boxplots represent JSD q-value of the gene (Methods). Below the red line (q<0.15) are genes 
that show significant positive selection. Above the red line (q>0.85) are probable artifacts 
(Methods). The histogram represents the mutation frequency of the gene in the cohort. (D) 
Enlarged list of identified genes. 
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Figure 13 | Identification of Glioblastoma Multiforme Associated Mutations using TDA. 
(A)  Top: mutational load distribution in a logarithmic scale across all samples. Bottom: no statistical 
significance of the mutational load, as assessed by our connectivity analysis across a series of 
networks, generated by Mapper (Methods). (B) Connectivity analysis summary of selected 
mutations in a coarse grid of networks generated using the Mapper algorithm (Methods). Numbers 
in the tiles represent the total number of significant mutations found in that network. In parenthesis 
are the number of samples in the first connected component of the network (Methods). The red 
square indicates the selected range of networks used in a second connectivity analysis for same 
mutated genes. To avoid inclusion of networks with mutational load effects (A), the number of tiles 
selected is smaller than in other cases (Methods). (C) At the bottom are cancer-associated genes 
identified by the connectivity analysis. Previously reported genes are depicted in yellow, novel 
candidates in cyan. Genes are ordered by significance frequency across the networks as presented 
in the top step function. Boxplots represents JSD q-value of the gene (Methods). Below the red line 
(q<0.15) are genes that show significant positive selection. Above the red line (q>0.85) are 
probable artifacts (Methods). The histogram represents the mutation frequency of the gene in the 
cohort. 
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Invasive breast carcinoma 
 

The breast cancer cohort is the largest one we analyzed, encompassing 930 

samples after removal of a few outliers (Figure 14A) that contained less than 10 mutations. 

Mutational load effects were not completely removed, resulting in a narrow range of 

networks that were used for the connectivity analysis (Figure 14B, Supplemental Figure 

3F). Nevertheless, we identified 9 previously reported genes (44) and 4 novel candidates 

(Figure 14C). Interestingly, 8 out of the 13 cancer associated genes are found mutated in 

less than 4 percent of the samples, emphasizing the method’s ability to identify rarely 

mutated genes.  

One of the novel candidates, HUWE1 (mutated in 2.5% of the samples), is a core 

player in various oncogenic pathways, including   ubiquitination of TP53 and BRCA1 (59), 

two important tumor suppressors prominent in breast cancer (44). While elevated 

expression levels of HUWE1 have been reported associated with breast cancer 

development (59), it has never been reported associated in its mutant form. Similarly, 

aberrant expression levels of another rarely mutated gene, NOTCH2 (mutated in 2% of 

the samples), showed association with breast cancer progression (60), however not in its 

mutant form. Given the fact that NOTCH2 showed a significant signal for positive selection 

(JSD q-value<0.15) and HUWE1 has not be declared as false discovery, we find them to 

be interesting for further research, especially since there is a growing evidence supporting 

the Notch pathway and HUWE1 as therapeutic targets (61)(62).  LRP2, which encodes, 

LDL receptor protein-2, is another novel candidate. Interestingly, LRP1B, a paralog of 

LRP2 (according to Ensembl ver.84 (63)), is reported to be associated with endocervical 

carcinoma (64). While a deeper investigation is needed in order to identify LRP2’s role in 

breast cancer, the fact that other LDL receptor, LDLR, is therapeutically targeted (65), 

makes LRP2 an interesting candidate for further investigation.  
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Figure 14 | Identification of Invasive Breast Carcinoma Associated Mutations using TDA. 
(A) Top left: mutational load distribution in a logarithmic scale across all samples. The dashed red 
line represents a subsampling threshold. Grid below the distributions summarizes the statistical 
significance of the mutational load, as assessed by our connectivity analysis across a series of 
networks, generated by Mapper (Methods). In most networks the mutational load is significant 
(p<0.05). After subsampling (methods) as per the threshold, the new mutational load distribution 
is centered around the mutational load median of the non-hypermutated cases. The mutational 
load is no longer significant in most networks. (B) Connectivity analysis summary of selected 
mutations in a coarse grid of networks generated using the Mapper algorithm (Methods). Numbers 
in the tiles represent the total number of significant mutations found in that network. In parenthesis 
are the number of samples in the first connected component of the network (Methods). The red 
square indicates the selected range of networks used in a second connectivity analysis for same 
mutated genes (Methods). (C) At the bottom are cancer-associated genes identified by the 
connectivity analysis. Previously reported genes are depicted in yellow, novel candidates in cyan, 
artifacts in red. Genes are ordered by significance frequency across the networks as presented in 
the top step function. Boxplots represents JSD q-value of the gene (Methods). Below the red line 
(q<0.15) are genes that show significant positive selection. Above the red line (q>0.85) are 
probable artifacts (Methods). The histogram represents the mutation frequency of the gene in the 
cohort. 
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Colon adenocarcinoma 
 
             Identifying cancer-associated genes in colon adenocarcinoma is a difficult task 

owing to the bi-modal distribution of the mutational load, separating the cohort (208 

patients), into two groups, corresponding to hypermutated and non-hypermutated 

samples (Figure 15A). Those hypermutated samples have significant mutational load 

effects (which increases our false discovery rates), as assessed by our connectivity 

analysis across a series of networks, generated by the Mapper. Subsampling and outlier 

removal eliminated artifacts in the colon adenocarcinoma dataset (Figure 15A bottom).    

             We identified in total 20 cancer-associated genes in colon adenocarcinoma, 

including 10 previously reported in the literature (42), and seven that were also reproduced 

using MutSig2CV (Figure 15C). Of the previously reported genes, particularly interesting 

is SOX9 (mutated in 12% of the samples), a developmental gene encoding the SOX-9 

protein, an important factor for cell differentiation in intestinal stem cell niche (42). SOX9 

is also known to facilitates beta-catenin degradation (42), an oncogenic factor in the Wnt 

signaling pathway (66). Loss-of-function mutations in SOX9, therefore, could have 

oncogenic effects. Since SOX9 mutations have not yet validated experimentally to be a 

driver of colon adenocarcinoma, to our best knowledge, our finding can facilitate an 

exploration in this direction. 

                  Two additional genes, NCOR1, and ESRRA were found to be novel 

candidates. ESRRA (mutated in 11% of the samples), is particularly interesting since it 

encodes the Estrogen-Related Receptor alpha (ERRα) protein, thus suggests that there 

may be a subset of steroid hormone responsive tumors. This observation is important 

since ERRα is a potential biomarker of unfavorable prognosis and is targeted for 

therapeutic development in breast cancer (67).   
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Figure 15 | Identification of Colon Adenocarcinoma Associated Mutations using TDA.  
(A) Top left: mutational load distribution in a logarithmic scale across all samples. Before 
subsampling (Methods) there is an observed bi-modal distribution, separating patients into 
hypermutated and non-hypermutated cases. The dashed red line represents a subsampling 
threshold. Grid below the distributions summarizes the statistical significance of the mutational 
load, as assessed by our connectivity analysis across a series of networks, generated by Mapper 
(Methods). In most networks the mutational load is significant (p<0.05). After subsampling 
(Methods) as per the threshold, the new mutational load distribution is centered around the 
mutational load median of the non-hypermutated case. The mutational load is no longer significant 
in most networks. (B) Connectivity analysis summary of selected mutations in a coarse grid of 
networks generated using the Mapper algorithm (Methods). Numbers in the tiles represent the total 
number of significant mutations found in that network. In parenthesis are the number of samples in 
the first connected component of the network (Methods). The red square indicates the selected 
range of networks used in a second connectivity analysis for same mutated genes (Methods). (C) 
At the bottom are cancer-associated genes identified by the connectivity analysis. Previously 
reported genes are depicted in yellow, novel candidates in cyan, reproduced by MutSig2CV in 
green. Genes are ordered by significance frequency across the networks as presented in the top 
step function. Boxplots represent JSD q-value of the gene (Methods). Below the red line (q<0.15) 
are genes that show significant positive selection. Above the red line (q>0.85) are probable artifacts 
(Methods). The histogram represents the mutation frequency of the gene in the cohort. 
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Stomach adenocarcinoma 

 
The analysis of the stomach adenocarcinoma cohort (263 samples) involved 

similar challenges to those we encountered in the analysis of the colon adenocarcinoma 

dataset. That is, a bimodal distribution of the mutational load which entailed significant 

mutational load effects in all of the networks, as assessed by our connectivity analysis 

across a series of networks, generated by the Mapper. The mutational load effects were 

removed after a subsampling process (Figure 16A).    

Connectivity analysis over a fine range of networks (Figure 16B, red square), 

revealed in total nine cancer-associated genes (Figure 16C); four of them 

(PIK3CA,CDH1,ARID1A,TP53) were  previously reported (45), one (AKAP13) reproduced 

by MutSig2CV, and additional four novel candidates. PEG3 (mutated in 9.8% of the 

samples), a novel candidate, promotes p53-mediated apoptosis (68) and demonstrates 

tumor suppressor activity in glioma cell lines (69), however PEG3 mutations were never 

reported associated in stomach adenocarcinoma to our best knowledge. Other novel 

candidates (UNC13C, AFF2, PLXNA4) do not demonstrate a trivial association with 

cancer, although PLXNA4 encodes the Plexin-A4 protein, a member of the semaphorin 

receptor family, which is implicated in various oncogenic processes (70). AFF2 is 

associated with Fragile X syndrome, a genetic condition involving genomic instabilities of 

the X chromosome (71).  
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  Figure 16 | Identification of Stomach Adenocarcinoma Associated Mutations using TDA.  
(A) Top left: mutational load distribution in a logarithmic scale across all samples. Before 
subsampling (Methods) there is an observed bi-modal distribution, separating patients into 
hypermutated and non-hypermutated cases. The dashed red line represents a subsampling 
threshold. Grid below the distributions summarizes the statistical significance of the mutational 
load, as assessed by our connectivity analysis across a series of networks, generated by Mapper 
(Methods). In most networks the mutational load is significant (p<0.05). After subsampling 
(Methods) as per the threshold, the new mutational load distribution is centered around the 
mutational load median of the non-hypermutated case. The mutational load is no longer significant 
in most networks. (B) Connectivity analysis summary of selected mutations in a coarse grid of 
networks generated using the Mapper algorithm (Methods). Numbers in the tiles represent the total 
number of significant mutations found in that network. In parenthesis are the number of samples in 
the first connected component of the network (Methods). The red square indicates the selected 
range of networks used in a second connectivity analysis for same mutated genes (Methods). (C) 
At the bottom are cancer-associated genes identified by the connectivity analysis. Previously 
reported genes are depicted in yellow, novel candidates in cyan, reproduced by MutSig2CV in 
green. Genes are ordered by significance frequency across the networks as presented in the top 
step function. Boxplots represent JSD q-value of the gene (Methods). Below the red line (q<0.15) 
are genes that show significant positive selection. Above the red line (q>0.85) are probable artifacts 
(Methods). The histogram represents the mutation frequency of the gene in the cohort. 
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METHODS 

Samples collection and preprocessing 
 

We collected global gene expression levels and somatic mutation data of seven 

tumor types from the public repository TCGA. We only considered patients for which both 

gene expression and mutation data were available. RNA-seq expression levels were 

retrieved in RSEM (RNA-Seq by Expectation-Maximization) format (Supplemental Table 

3). We expressed RSEM output transcripts per million (TPM) on a logarithmic scale, using 

the following formula: 𝑟 = log2(1 + 𝑥 ∗ 106)  where x is the estimated relative abundance 

of a particular gene. We then used r values to constitute a matrix in which each row 

represents one patient and each column represents a different gene. 

Somatic mutation data were retrieved from Broad’s institute firehose pipeline (47),  

which aggregates and curates somatic mutation data from various mutation calling centers 

(Supplemental Table 3).  Somatic mutations were identified by the original center by 

comparing tumor to normal samples of each patient. Further details on the specific 

thresholds used by each center can be found in the original TCGA publications for each 

tumor (8–10, 42–45)). Common variants were filtered out by removing mutations in sites 

that were present in dbSNP (72), a repository of known common variants. The final MAF 

files from the various centers were further curated by Broad’s Oncotator software (73), 

which annotates reads based on the Human Genome Reference Consortium build 37 

(GRCh37) and incorporates additional common variant information from 1000Genomes 

(74). Since the intersection of available mutation data and gene expression data is often 

small, we preferred to use an expanded somatic mutation dataset when available (marked 

as Oncotator_RAW).  

From the MAF file, we extracted patient’s ID, mutated genes, and the mutation 

type (non-synonymous or synonymous) and generated a non-synonymous binary matrix, 

where rows represent patients and columns correspond to individual genes. The binary 
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entries (0 or 1) in the matrix describe whether the gene appeared non-synonymously 

mutated at least once in the patient’s genome. We later calculated for each gene the ratio 

between non-synonymous mutations and a total number of mutations of that gene. We 

used this ratio as a scoring system to filter out genes in our downstream connectivity 

analysis.  

Finally, we intersected the expression matrix and the non-synonymous binary 

matrix based on common samples and concatenated them together as input to the Mapper 

algorithm. To avoid discrepancies between gene expression and annotations, we 

converted all annotations to comply with NCBI’s Entrez ID database as of July-07-2015. 

 

Topological representations 
 

We mapped the multidimensional gene expression data to a two-dimensional 

network using the Mapper algorithm as implemented in Ayasdi Cure software (31). The 

use of Mapper is particularly suited to complex biological data sets with a continuous 

structure such as global gene expression levels. The resulting topological representation 

is a two-dimensional network comprised of nodes and edges that preserve the continuous 

global expression patterns in the original multidimensional space. Each node in the 

network contains data points (samples) that are similar to one another in terms of gene 

expression. Edges connect samples that share at least one data point. Nodes that are not 

part of the largest connected component of the network were considered as outliers and 

removed from the downstream analysis (the percentage of nodes removed varies with 

each generated network, for absolute numbers see Results section). 

To construct the network, we used Pearson’s correlation between the 4,500 genes 

with the highest variance as a metric, and two nearest neighborhood lenses as our filtering 

functions.  Correlation is a standard measure of similarity between gene expression 

patterns, being less sensitive to normalization effects in comparison to other similarity 
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measures such as Euclidean distance. The choice of k-nearest neighbor lenses was 

based on their performance in capturing known biological features, such as separation 

between normal and tumor samples and agreement with known disease subtypes.  

 

Connectivity analysis 
 

We nominated a feature (such as a given mutated gene) as associated with global 

gene expression and therefore with the disease if it is localized or connected in the 

corresponding simplicial complex more than random. These features can be any function 

with support on the simplicial complex, e.g. frequency of a somatic mutation within each 

node, mutational load or batch effects. We quantified their localization using the following 

equation:  

 

 

 

where, for every feature of interest (𝑔)  we measured the connectivity value (𝐶)  by 

summing over all nodes pairs (𝑖, 𝑗) the normalized feature value (𝑝) times the adjacency 

matrix (𝐴) of the simplicial complex. In this expression, 𝑝𝑖 =
𝑒𝑖

∑ 𝑒𝑖
 where 𝑒𝑖 is the average 

value of the feature in that node. We also normalized this quantity using the network size, 

measured as the total number of nodes (𝑁) in the network. In this way, connectivity can 

only take values between 0 and 1. An example is provided in Figure 17.   

                    To assess the statistical significance of the connectivity, we generated a null 

distribution of connectivity values for each tested feature by permuting the labels 

(samples) across the network (10^4 times when testing for cancer-associated genes and 

2.5x10^3 when testing for mutational load and batch effects). The p-value is simply the 

ratio between the number of connectivity values larger than the true connectivity value 
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and the total number of permutations. Finally, we adjusted for multiple testing using 

Benjamini-Hochberg’s false discovery rate (FDR). An example of significantly connected 

mutations in lower-grade glioma patients is provided in Supplemental Figure 1. 

 

 
Genes filtering for connectivity analysis 
 

Not all genes were selected for connectivity analysis, to avoid corrections that were 

too large due to multiple testing adjustments. Accordingly, we set two types of filtering 

thresholds which together allowed a maximum of 350 genes (This number was chosen 

based on our observations that it is large enough to allow identification of non-trivial genes, 

yet it is small enough to avoid large correction due to multiple testing adjustments). The 

first filter sets a threshold based on recurrence in the cohort, ranging from 4 to 6 percent 

of the samples in most cases while allowing a lower threshold in some large cohorts. The 

second filter ranks genes based on their non-synonymous ratio, defined as the number of 

non-synonymous mutations of the gene over its total number of mutations in the cohort. 

We kept the 350 top ranked genes. 

Figure 17 | Connectivity analysis.  Connectivity is calculated for a feature over a network of 
six nodes (A-F) and five edges. The values in the nodes represent the feature average value 
(𝑒𝑖)  within the node (In the context of this work, the value represents the fraction of patients 
within the node that harbor a specific mutation). The normalized values for each node and the 
adjacency matrix of the network are used to calculate the connectivity of the feature in the 
network. 
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Subsampling of hypermutated samples and batch effects 
 

Our method is sensitive to situations where there is an association between 

differential mutation rates and global gene expression patterns. This could happen in 

cases where a mutation in the DNA mismatch repair pathway (such as MSH3) render cells 

hypermutated and simultaneously leads to a similar transcriptional program in the samples 

with the mutated version of the gene.  In order to circumvent these effects, we statistically 

assessed the connectivity of the mutational load function in the simplicial complex, defined 

as the average number of the mutations in each node. If the mutational load was 

significantly connected in the networks (p<0.05), then we subsampled mutations from the 

hypermutated samples and tested for mutational load connectivity again.  

The exact steps we took are as follows.  

1. We examined the mutational load histogram (c.f. example in Figure 16A) and 

set a threshold that separates the samples into two groups: hypermutated and 

non-hypermutated. 

2. We defined a subsampling factor 𝑠 = (𝑎/𝑏) where  

𝑎 = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑜𝑎𝑑 𝑜𝑓 ℎ𝑦𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. 

𝑏 = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑜𝑎𝑑 𝑜𝑓 𝑛𝑜𝑡 ℎ𝑦𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. 

3. We subsampled mutations from the hypermutated samples by keeping 

randomly 1 of every 𝑠 mutations, so that both groups have the same median 

after subsampling. 

4. We tested for mutational load effects again. If still significant, we chose another 

threshold and repeated the process from step 1.  

 

Batch effects are also potential confounding factors. In the Colon Adenocarcinoma 

dataset, for instance, somatic mutation data is aggregated from different mutation calling 

centers (Supplemental Table 3). Differences in technologies lead to a certain bias. We 
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marked samples based on their center of origin and tested for connectivity on the simplicial 

complex of each batch. We removed the contribution of results originating from networks 

that demonstrated statistically significant batch effects. 

 

Parameter scan and statistical power 
 

To increase statistical power and robustness of the results, we generated for each 

cancer type a series of topological representations by scanning over the Mapper algorithm 

gain and resolution parameters. We scanned over the resolution range of 10-80, in coarse 

intervals of 10, and the gain range 1.5-8.5, with a coarse interval of 1. This procedure 

yields a series of 49 simplicial complexes or networks. On each network, we used the 

analysis described above to test for localization of various features, including batch 

effects, mutational load, and somatic mutations. We then chose a finer range of networks 

for each cancer type, based on the following criteria: 

1. Relatively a high number of significant genes (q<0.15) as determined by our 

connectivity analysis. This increases our statistical power or sensitivity (Figure 18). 

2. Relatively a high number of samples in the first connected component of the 

networks. Since we considered only the first connected component in our 

downstream analysis, networks with as many samples as possible were preferred.  

3. Not significant mutational load and batch effects. 

We generated a finer set of networks with resolution and gain intervals of 5 and 

0.5, respectively, for the selected regions of the parameter space. We tested for 

localization of somatic mutations across the fine range of networks and summarized the 

results.  
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Positive selection control 
 

Studies in cancer (17) have shown the existence of anti-correlation between  

gene expression levels and neutral mutation rates of that gene (Figure 3). This is partially 

explained by the transcription-coupled repair mechanism, a process in which transcribed 

regions are more accessible to repair processes such as nucleotide excision repair 

enzymes (21).  Accordingly, we reasoned that if the mutation rate of a gene deviates from 

the expected anti-correlation with the gene’s expression levels, this implies some positive 

selection of this mutation. Conversely, an agreement between low mutation rates and high 

expression levels could be explained by the neutral model and, therefore, is an indication 

a false positive.   

For every statistically significant mutated gene according to the above analysis, 

we measured the similarity between its mutation rate and gene expression distributions 

across the simplicial complex using Jensen-Shannon Distance (JSD). Boxplot diagrams 

(Figure 9C, boxplot) represent the distribution of JSD’s q-value (statistical significance 

after adjusting for multiple testing using Benjamini-Hochberg procedure) for that gene 

across a series of simplicial complexes, as determined by a permutation test of 2,000 

permutations. Mutation rates for genes below the red line represent a significant (𝑞 < 0.15) 

Figure 18 | Statistical power. The relationship between the number of 
significant genes and the statistical power.  
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deviation from the expected model and are probably subject to positive selection. Indeed, 

in many cases we found well-established cancer-associated genes below the red line 

(Figure 9C, boxplot). Genes above the red line are in agreement with the neutral model 

(𝑞 > 0.85) and are probably false positives. Mutation rates for genes in between the red 

lines are not correlated nor anti-correlated with expression levels, hence, this test does 

not add or remove confidence in the genes’ association with the disease. 
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DISCUSSION 

 
The application of recent mathematical development in topological data analysis, 

specifically the Mapper algorithm, has been demonstrated, in this work, to be highly 

effective in analyzing complex genomic datasets involved in cancer research. Mapper’s 

ability to reduce the dimensionality of the data, while reliably capturing the continuous 

structure of the global gene expression space, allowed us to implement an analysis 

pipeline involving an original statistical test (connectivity analysis) in order to extract novel 

as well as previously reported cancer associated genes. This robust and scalable 

framework performed well across seven tumor types, including challenging cases such as 

the hypermutated landscape of colon and stomach adenocarcinoma. Importantly, 

reproducing previous reports of cancer-associated genes set confidence in our novel 

method, and it highlights the power of topological data analysis, and specifically the 

Mapper algorithm, in the analysis of complex and multidimensional datasets that we often 

encounter in cancer research and other fields of science.  

Our method brings a new perspective from a different angle into previous cancer 

studies. Using our orthogonal approach which does not rely on complex modeling of the 

mutational landscape, but rather on a topological representation of the global gene 

expression levels (the disease phenotype) is very informative when re-analyzing 

heterogeneous and complex conditions such as cancer, where complex modelling of the 

mutational landscape is involved and introduces systematic errors to the analysis.  Our 

robust results are, therefore, instrumental in further solidifying previous reports, and also 

provides insight into novel cancer-associated genes, which, possibly, open the door to 

subsequent cancer studies, both computational and experimental.  
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 Admittedly, deeper analysis of the results, along the lines of association with 

known subtypes, pathway analysis, correlation with epigenomic markers and copy number 

alterations is required prior to assembling a viable biological story that can be further 

validated experimentally. Repeating similar analysis on tumor subsets such as non-

hypermutated samples in colon adenocarcinoma or distinct clinical subsets of breast 

cancer would be instrumental in depicting the landscape of the disease in even finer detail.   

Nevertheless, a clear picture emerges: our method is capable of identifying cancer-

associated genes, even in complex hypermutated tumors such as colon and stomach 

adenocarcinoma, recapitulating well reported ones and augment the mutational landscape 

of other cancers with novel candidates such as FMN2 mutations in lung and bladder 

cancer, PTPRD in bladder cancer, and adding further support to recently reported findings 

in gliomas such as NIPBL mutations and SOX9 mutations in colon adenocarcinoma. Some 

of our novel candidates, such as the group of ion-channel genes in lung adenocarcinoma 

(ANO4, SLC8A1, ANK2,SCN2A and CACNA2D) are particularly encouraging since ion-

channels have already been explored as therapeutics targets (53). Moreover, since our 

method is tuned to identify cancer-associated genes based on their association with the 

disease phenotype, namely, global gene expression levels, we are able to detect rarely 

mutated genes as well as genes that are potentially dismissed due to low recurrence or 

irrelevant genomic characterizations such as replication time and gene length, parameters 

taken into account by standard methods.   

  Moving forward, we will further solidify our results, with the aim to experimentally 

validate some of the novel candidates. Additionally, we have already started expanding 

the project to include all other tumor types in TCGA for which sufficient data exists, namely 

a minimum of 150 patients. A few tumor cohorts apply and include lung, cervical, and head 

and neck squamous cell carcinoma, as well as liver and thyroid carcinoma. Pan-glioma 
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and colorectal studies, as well as analysis of clinical subset in breast cancer,  are also 

possible future projects, in consonance with previous research (42)(44) (58).  

Before we conclude, it’s worth mentioning some of the limitations of the method 

that we have developed. Since we are identifying genes based on association with gene 

expression levels, we might miss mutations that are related to the disease but have a mild 

effect on expression levels. Similarly, our method is sensitive to the association between 

differential mutation rates and differential expression levels (Methods) and, therefore, 

requires testing for mutational load effects which are sometimes hard to remove (for this 

reason we neglected analysis of skin cutaneous melanoma).  

Additionally, due to a large correction for multiple testing, our method is limited to 

350 potential genes (sweet spot number of genes that allows identification of non-trivial 

genes yet does not incur too large correction from multiple testing), as determined by our 

filtering parameters (Methods), inevitably missing potential candidates in the process.  In 

terms of statistical power, our method does not seem to be effective with cohorts smaller 

than 140-150 patients, which was just about enough to include the GBM cohort (142 

samples) in our analysis. Lastly, since our method relies on many parameters related to 

the Mapper algorithm (i.e. choice of filter and metric functions, and range of gain and 

resolution parameters), we have to scan over a wide range of gain and resolution 

parameters, which make it a bit cumbersome, nevertheless robust.  

Conclusively, our method emphasizes the robustness and viability of topological 

data analysis in general and specifically highlights the advantages of using the Mapper 

algorithm, in analyzing multidimensional datasets that we often find in cancer research 

and in other fields of science. In this era of data, as such datasets are becoming more 

readily available, it is safe to assume an increasing number of open data-driven questions, 

which invites more development and application of novel analytical methods of this kind.  

Finally, the method that we have developed and demonstrated here proved powerful for 
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identifying cancer-associated genes based on gene expression levels, which is a naively 

more suitable approach to detect cancer-associated genes than other methods relying on 

recurrence or complex modeling, which do not account for the disease phenotype. 

However, this is not to argue in any way that our method is superior to other methods. 

Instead, we offer this framework as a complementary method to currently employed 

techniques in cross-sectional cancer studies, and this is just the beginning of an effort to 

provide a new perspective on the identification of genes that may play a role in cancer.  
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APPENDIX 

Supplemental Table 1 | Extended results list. The columns' labels represent abbreviated tumor 
name provided by TCGA and are sorted alphabetically. Previously reported genes are depicted in 
yellow, reproduced by MutSig2CV in green, novel candidates in blue, artifacts in red. Superscript 
digit next to the artifacts indexes the reason for exclusion: 1 - low expression levels (TPM<2), 2 - 
false positive (JSD q-value>0.85), 3 - batch effects, 4 - pseudogene. 
 

BLCA BRCA COAD GBM LGG LUAD STAD 

FGFR3 TP53 SOX9 IDH1 IDH1 STK11 PIK3CA 

RB1 PIK3CA APC ATRX NOTCH1 EGFR CDH1 

ELF3 CDH1 PIK3CA EGFR PTEN KEAP1 ARID1A 

TP53 MAP3K1 TP53 NF1 TP53 AKAP9 TP53 

PTPRD CBFB SMAD4 COL6A3 CIC KRAS AKAP13 

MED13 GATA3 TCF7L2 CALN1 FUBP1 ATM UNC13C 

FMN2 MAP2K4 RNF43 SLCO6A1 1 ATRX TP53 PLXNA4 

HSPG2 RUNX1 KMT2C   EGFR SMARCA4 AFF2 

MUC17 2 CTCF PIK3R1   NF1 SLC8A1 PEG3 

HERC2P2 4 NOTCH2 KRAS   TCF12 SCN2A   

  FAT3 ARHGAP5   NIPBL SLITRK4   

  LRP2 ARFGEF1   ZBTB20 SATB2   

  HUWE1 VPS13B   SMARCA4 CPED1   

  USH2A 1 FLT3   ZNF292 CCDC129   

    NEFH   IDH2 FMN2   

    CCDC141   COL6A3 PCDHB4   

    STK11   SYNE1 POLQ   

    ESRRA   BAGE2 1 GPR158   

    NCOR1   POTEC 1 DGKB   

    NLRP13 1   FAM47C 1 CACNA2D1   

    CDH8 1     CHD5   

    MYH3 3     MYOM2   

          ADAMTS12   

          EPHB1   

          CDH12   

          RP1L1   

          ANO4   

          TSSC2   

          ANK2   

          CROCCP2   

          PTPRC   

          KLHL4 2   

          SI 1   

          PSG8 2   

          FAM47C 1   
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Supplemental Table 2 | Connectivity analysis parameters. Connectivity analysis parameters. 
This table summarizes the parameters we used to analyze each tumor using our pipeline as 
described in the Methods section. In the “Subsampling threshold” column, NA means that 
subsampling is not required. The values in the “Samples threshold” column represent the fraction 
of samples harboring the mutation as our first filter (For example, 0.06 means 6%). 
 

Tumor 
type 

Subsampling 
threshold 

Sample 
threshold  

Non-synonymous 
ratio threshold 

genes permutations Mutational 
load 
permutations  

BLCA NA 0.06 350 10000 2500 

BRCA 2.3 0.015 350 10000 2500 

COAD 3 0.06 350 10000 2500 

GBM NA 0.04 350 10000 2500 

LGG 2.5 0.02 350 10000 2500 

LUAD NA 0.06 350 10000 2500 

STAD 2.6 0.04 350 10000 2500 

 
 

Supplemental Table 3 | Raw data. This table documents RSEM (gene expression levels) version 
used for each tumor analysis, Oncotator version corresponds to the MAF (mutations data) file 
collected from the mutation calling center. 

Tumor type RSEM version (TCGA) Oncotator MAF version (BROAD) Mutation calling 
center 

BLCA 3.1.18.0 Raw_Level_3.2015082100 Broad 

BRCA 3.1.11.0 Level_3.2015110100 WUSTL 

COAD 3.1.12.0 Raw_Level_3.2015082100 Broad, BCM 

GBM 3.1.2.0 Raw_Level_3.2015082100 Broad 

LGG 3.1.13.0 Raw_Level_3.2015082100 Broad 

LUAD 3.1.14 Raw_Level_3.2015082100 Broad 

STAD 3.1.0.0 Level_3.2015082100 Broad 
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Supplemental Figure 1 | PTEN and CIC mutations in lower-grade glioma. The simplicial 
complex was generated using the Mapper algorithm on the gene expression levels of 513 
lower grade glioma tumors. Each node contains samples clustered together based on similar 
gene expression levels. Edges connect nodes that share at least one sample. Nodes are 
colored based on mutation frequency across the samples in each node. Grey means zero 
mutations (A) Significant localization (p<0.0001) of PTEN mutations on the right side of the 
network. (B) CIC mutations are significantly localized (p<0.0001) on the left part of the 
network.  
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Supplemental Figure 2 | Pipeline flow diagram. Our pipeline is separated into four main parts, 
and is described in detail in the Methods section: 1 - Data processing, which include retrieval of 
gene expression and mutation data from TCGA and BROAD institute respectively and filtering 
genes for downstream connectivity analysis. 2 – Topological data analysis followed by connectivity 
analysis over a coarse range of networks in order to assess mutational load effects and preliminary 
identification of cancer-associated genes. 3 – Connectivity analysis over a finer range of networks 
to identify a final list of cancer-associated genes. We also test for batch effects at this stage.  4 – 
Identifying positively selected genes and controlling for various kinds of artifacts. 
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Supplemental Figure 3 | Fine networks summary. Fine networks summary. Connectivity 
analysis summary, across the seven tumors (A-F), of selected mutations in a fine grid of networks 
generated using the Mapper algorithm (Methods). The fine range was determined after considering 
various parameters (Methods). Numbers in the tiles represent the total number of significant 
mutations found in that network. In parenthesis are the number of samples in the first connected 
component of the network (Methods). Red dots (applies to colon adenocarcinoma only) represent 
networks in which we identified significant batch effects (Methods). 


